Data Integration for Classification Problems Employing Gaussian Process Priors
نویسندگان
چکیده
By adopting Gaussian process priors a fully Bayesian solution to the problem of integrating possibly heterogeneous data sets within a classification setting is presented. Approximate inference schemes employing Variational & Expectation Propagation based methods are developed and rigorously assessed. We demonstrate our approach to integrating multiple data sets on a large scale protein fold prediction problem where we infer the optimal combinations of covariance functions and achieve state-of-the-art performance without resorting to any ad hoc parameter tuning and classifier combination.
منابع مشابه
Variational Bayesian Multinomial Probit Regression with Gaussian Process Priors
It is well known in the statistics literature that augmenting binary and polychotomous response models with gaussian latent variables enables exact Bayesian analysis viaGibbs sampling from the parameter posterior. By adopting such a data augmentation strategy, dispensing with priors over regression coefficients in favor of gaussian process (GP) priors over functions, and employing variational a...
متن کاملvbmp: Variational Bayesian Multinomial Probit Regression for multi-class classification in R
SUMMARY Vbmp is an R package for Gaussian Process classification of data over multiple classes. It features multinomial probit regression with Gaussian Process priors and estimates class posterior probabilities employing fast variational approximations to the full posterior. This software also incorporates feature weighting by means of Automatic Relevance Determination. Being equipped with only...
متن کاملOne-Class Classification with Gaussian Processes
Detecting instances of unknown categories is an important task for a multitude of problems such as object recognition, event detection, and defect localization. This paper investigates the use of Gaussian process (GP) priors for this area of research. Focusing on the task of one-class classification for visual object recognition, we analyze different measures derived from GP regression and appr...
متن کاملRegression with Gaussian Processes
The Bayesian analysis of neural networks is diicult because the prior over functions has a complex form, leading to implementations that either make approximations or use Monte Carlo integration techniques. In this paper I investigate the use of Gaussian process priors over functions, which permit the predictive Bayesian analysis to be carried out exactly using matrix operations. The method has...
متن کاملMixtures of Gaussian process priors
Nonparametric Bayesian approaches based on Gaussian processes have recently become popular in the empirical learning community. They encompass many classical methods of statistics, like Radial Basis Functions or various splines, and are technically convenient because Gaussian integrals can be calculated analytically. Restricting to Gaussian processes, however, forbids for example the implementi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006